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Abstract. Quantum groups at the roots of unity have the property that their centre is enlarged.
Polynomial equations relate the standard deformed Casimir operators and the new central
elements. These relations are important from a physical point of view, since they correspond
to relations between quantum expectation values of observables that have to be satisfied on
all physical states. In this paper, we establish these relations in the case of the quantum Lie
superalgebra{, (s/(2|1)). In the course of the argument, we find and use a set of representations
such that any relation satisfied on all the representations of the set is #ygsit(2|1)). This

set is a subset of the set of all the finite-dimensional irreducible representatiof)$sdf2|1)),

which we classify and describe explicitly.

1. Introduction

Classical and quantum Lie superalgebras and their representations respectively play
an important role in the understanding and exploitation of classical @déformed
supersymmetry in physical systems. A complete classification of the finite-dimensional
simple classical Lie superalgebras o¢Ehas been given by Kac [11, 12] and Scheunert [23].
The corresponding irreducible representations fall into two series, called typical and atypical.
Irreducible representations of the quantum analogue of superalgebras are studied
intensively whery is not root of unity in [20, 21, 18, 25].
A complete classification of finite-dimensional irreducible representations of unrestricted
quantum algebras fay being a root of unity exits only in the particular caselfyf(s/(2))
[22]. Partial classifications exist also in the caself){s/(3)), in [6] for the restricted
case and in [2] for periodic representations. Considerable progress towards a complete
classification in the general case df(G) for G being a simple Lie algebra was made in
[4, 5].
The classification of finite-dimensional irreducible representatiortd, 6ssp(1|2)) for
any g parallels the/,(sl(2)) case [9, 16, 19, 26]. The only other fully understood case is
U, (s1(2]1)) [25, 27].
Our main goal in this paper is the structure of the centr& @$/(2|1)) wheng is a root
of unity. Complete sets of representations, to be defined below, give a convenient way of
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proving relations in this centre. Their construction involves a detailed knowledge of matrix
elements of the finite dimension irreducible representations, whose classification is given
below, with emphasis on what is needed for the rest of the paper.

In section 2, we give the definition of the quantum superalgéty@(2|1)) and the
expression for the central elements. Generalities on the finite-dimensional irreducible
representations o, (s/(2|1)) are presented in section 3. In section 4, we recall some
useful results ori4,(gl(2)) at roots of unity and we give complete sets of irreducible
representations for this quantum algebra: expressions in the universal quantum enveloping
algebra that vanish on such sets, vanish identically. In section 5, we classify the finite-
dimensional irreducible representationsiffi(s/(2/1)). In section 6, we present complete
sets of representations corresponding to infinite subsets of the set of continuous parameters.
All the representations of these complete sets have the same dimension, unlike the classical
case [1]. Finally, in section 7, we prove the relations in the centre using our complete set
of irreducible representations.

2. Quantum superalgebral{,;(sl(2|1)) and its centre

The superalgebrd/, (s/(2|1)) is the associative superalgebra ov@r with generators
ki=q", kit =g ko= q", ky;* = q7"2, ey, ez, f1, f2 and relations

kiky = koky 1)
kieki t=q"e;  kifikil=q""f; @
e1f1 — frer = ];l__;ill e2f2+ fae2 = ];2__;(511 3)
[e1, f2] =0 [e2, f1] =0 4)
es=f;=0 5)
efe; — (q +q Yereser +exe2 =0 (6)
L= @+qa D ffahi+ foff =0. (1)

The last two equations are called the Serre relations. The matfixis the distinguished
Cartan matrix ofs/(2|1), i.e.

%b(i_j) 8)

The Z,-grading inlf, (s/(2|1)) is uniquely defined by the requirement that the only odd
generators are; and f>, i.e.
deg(k;) = deg(kz) =0
deg(k; ) = deg(k; ") =0
deg(e;) = deg(f1) =0
deg(ep) = deg(f2) = 1.

We will not use the (standard) co-algebra structure in what follows.
Define

9)

ez =e16e2 — q_leg e1 and fa=fofi—qfife. (20)
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The quantum Serre relations become

e1e3 =4qgese;

B (11)
A=q1ffs.
Furthermore
€263 = —(g e3ze
2€e3 q _31 2 (12)
fafa=—q""f2f3
and
kyky — kgt
€3 f3 + f3 €3 = —— -+
qg—q7t (13)
e% = f32 =0.
In what follows, we will use the conventional notation
i
xl=-——"+. (14)
q—q

Wheng is not a root of unity, the centre éf,(s/(2|1)) is generated by the elements
Cp, p € Z, where

Cp = k"M (g — q_l)z{[hl + ha 4 1[h2] — fied
+ faea([hy + halg* ™% — [hy + ha + 1))
+ faea([h2 — 2lg* ™% — [hp — 1))
+(q — g g P[Pl frezerka + (g — g Hg? P frfresky [p — 1]

+(@ = a2 pllp — Ufafeesea) (15)
They satisfy the relations
CmC,,Z = Cp30p4 if p1+ p2=p3+ps. (16)

The fact that the centre was not finitely generated in the classical case was discovered in
[13, 24]. The explicit expression for a set of generators of the centre, together with the
relations, was given in [1] in the classical case and in [3] in the quantum case.
In this paper, we consider the case wheré a root of unity. Let/ be the smallest

integer such thag’ = 1. We define

l if / is odd

I'= - a7
1/2 if [ is even

the elements; = k!, x; = ¢} andy; = £/ also belonging to the centre.

Proposition 1.When! is odd, the central elements, z», x1, y1 andC,, p € Z satisfy the
relations

Cor1 = ZfZgCﬂ

Ch 1 = z2375C),

l m+n—1\[/l—m
Ci,....CN=(C1+ 1 -1 CuCl——
Pi(Cy N=C+1D + m; 1m_1< n4l )( " ) (18)

n=0
m+n<l

=(1—-2222) (5 —1) — (¢ —g H¥2Zz3y1x1 .
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The first two relations follow from the expression @ and from (16). The third relation
will be proved using complete sets of representation&,@f/(2|1)). Furthermore, there is
no other independent polynomial relation.

3. Generalities on finite-dimensional irreducible representations

Let us consider a finite-dimensional irreducible left modMeover i, (s/(2]1)).

e The generatorg; andk, are simultaneously diagonalizable on the module
° Sincee§ =0 and dimM < oo, there exists a subspaéec M annihilated bye, i.e.

YveV eov=0. (29)
° Sincee§ = 0 ande; e3 = —q e3 e, there existsd/y C V annihilated byes, i.e.
YveV eov=e3v=0. (20)

Because of (2) the subspabg is stable by left multiplication by; andk».

Because of (10) and (11) the subspageis stable by left multiplication by;.
Because ok, f1 = fiep andes f1 — fi1es = —ep k;l the subspac#j is stable by left
multiplication by f;.

Let g5 = g/(2) be the even subalgebra of(2|1). The algebrd/{,(gg) is generated by
e1, f1, k1 and k».

The moduleVy is then alf, (gz) submodule ofM. It is simple (as d4,(gg) module),
since any submodule ofy would generate a proper submodule Mf by left action of
U, (s1(2]1)). As a consequence of the simplicity W, the elemenk, k5 (theU (1) generator)
is represented by a scalar &b.

Letl, (g+) be the subalgebra of, (s/(2|1)) generated by,, fi, k; ande,. The subspace
Vo is also al, (g+)-module, annihilated by,.

From V, considered as a#,(g+)-module, one can construct an indudeg(s/(2|1))-
module M’ = U, (s1(2|1)) ®u,g,) Yo. ThenM is equal toM’ if M’ is simple, or to the
quotient of M’ by its maximal submodule otherwise.

Since we already know that each finite-dimensional irreducible representation of
U, (s1(2]1)) is associated with one finite-dimensional irreducible represent&§on i/, (gg),
we will construct the classification of the former in terms of the latter. As we will see, the
correspondence is one-to-one. We now need some resuli(gi(2)) at roots of unity.

4. U,(gl(2)) at roots of unity

4.1. The centre a,(g!/(2))

The elementsik3, kY, kb, e, f1 ¢\ fl, fie are central in4,(gl(2)). The q-deformed
guadratic Casimir operator is

Cuyi2n = qk1 + g kit + (g — g H2 fren. (21)

When! is odd, the centre of{,(gl(2)) is actually the algebra defined by the generators
kik2, ki, €}, f1, Cy 12y and the relation [15]

2P, (Cuyqi20/2) =Ky + k' + (g — g D fle) . (22)
The polynomialP; is the first kind Chebyshev polynomial of degredefined by
P;(cosx) = coglx). (23)
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4.2. Finite-dimensional irreducible representationd{fg/(2))

All the finite-dimensional simple modules ové&;(g/(2)) are of course cyclic. We denote
those representations that are deformations of the classical representigtiods and the
otherstype B. Knowing thel/, (s/(2)) case, we only need to add a parameter related to
the value of thel/(1) generatork;k3. This parameter may be provided &g.5 (value of
kik2) and a sign, or simply by the value of k, on a given vector. The finite-dimensional
irreducible representations of, (s/(2)) are [22]:

e typeA: usual (nilpotent) representations, Whéifé: 1, e’l' =0, fl’/ = 0, characterized
by their dimensionW = 1,...,/’ and a signw. The highest weight; is 1, = ¢V
These representations are given explicitly in equation (Al). The representation of
dimension/’ plays a special role. It is in fact in the intersection of this case and
the following.

e typeB: coloured (nilpotent) representations, with s&ﬂl: 0, fl’ = 0, characterized by
their highest weight.;, a continuous parameter. Their dimensiori’isThey are also
described by (A1).

e type B: periodic and semi-periodic representations, explicitly given in (A2). These
representations have dimensidn They depend on four complex parameters
corresponding to the values of the three central elenﬁhts’, f{ and one discrete
parameter corresponding to the value of the quadratic Cashiqi 2 of U, (gl(2))
and related to the former through the relation (22). Thégl(2))-representation is also
completely characterized by the parametees ¢, 8, A1 and i, appearing in

fivo = ¢'vo f1eivo = Bug

(24)
kivo = Avg = g*vg kovg = Aovg = g"*2vy.

The existence of periodic irreducible representations has the following consequence:
the primitive ideals defined as the kernels of these representations are not the annihilator of
the irreducible quotient of some Verma module, unlike the case of classical (super)algebras
[8, 17].

4.3. Complete sets of representationg/pfsi(2))

We prove that a set of generic (periodic) representations corresponding to an open subset of
the set of parameters builds a complete set, in the following sense: if an elemgiitigR))
acts as 0 on all the representations of this set, then it is the 0 eleméf)(sdf2)). This
terminology was used in [1], where the authors found complete sets of finite-dimensional
irreducible representations of the classiegP) andsi(2|1). For quantum groups at roots
of unity, we shall obtain rather different results.

Let R € U,(sl(2)) be such that it vanishes on a $etof representations. Lep2¢—")
be theg-grading of an element]kje;. We havek, (f{kje}) = ¢*'=" (f{kie}) k1. Any
element oft4, (s/(2)) is a sum of terms of given grading since tigkje] form a basis
of U, (s1(2). We write’ R = ZZ;; R4, Where the grading oR, is ¢*). CommutingR
with k; shows that all theR, vanish separately on the representation€2in The same
is true for eachf{R,. Sincell,(s/(2)) contains no zero divisor [14], the vanishing of
ffRd in U, (s1(2)) is equivalent to that ofz,. Hence, to prove tha is a complete set of
representations, we only have to show that the only elemedd, 6f(2)) commuting with
ky and acting as 0 on all representationdfs 0.

Let R be an element ob{, (s/(2)) with grading 1, and:, n’ € N such thatfl"kfR =
> ai fiikj el has only terms with; —#; € I'N ands; € N. Then f/'k} R can be written
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as a polynomial infll', ki1, and fie1, which commute with each other. The value of this
polynomial on the vectory of the representation (A2) is the same polynomial evaluated on
the scalargy’’, A1 and 8. If Q is a set of representations corresponding to an open subset
of C2 for the values ofp!, A, and 8, and if R vanishes on all the representationssaf

then the polynomial vanishes identically dfy (s/(2)), and hencek = 0 as an element of

U, (s1(2)). We then have the following proposition.

Proposition 2.A set of generic (periodic) representations corresponding to an open subset
of the set of values for the parameters is a complete set of representations.

Remark 1.An element oft{, (s/(2)) that vanishes on allype .A modules, or even on all
nilpotent or semiperiodic modules, is not necessarily Q,jits/(2)) (take simplyR = ¢} f}).
So a complete set of representations should include periodic ones.

Remark 2.Suitably choosen infinite sets of periodic representations (not necessarily
corresponding to an open set of values of the parameters) can also be complete.

5. Classification of finite-dimensional irreducible representations o4 (sl(2[1))

Let Vo an N-dimensional irreduciblé/, (g5)-module, that we extend to &, (g+)-module
by the requirement that, Vo = 0.
Let M’ be the induced module, (s/(2|1)) ®,q,) Vo- Then

M =Vo® 2Vo® fsVo® fafsVo. (25)

The subspace&f>Vo @ f3Vo) and f> f3V are representations of, (gz) with the same value
for central element&!, kb, e}, f! as for Vo. If we write the value of quadratic Casimir
Cu,g12)) Of Uy (gl(2)) asé + £~1 then its eigenvalues on the different subspaces are

Subspace Cu (s1(2))

Vo ! E+£7t (26)
(Vo ® f3Vo) : g€ +q71E7, g€ +qE7t

ff3Vo: E+&7L

The elementyy 15 f{, for p € N, p € {0, 1} ando € {0, 1} build a Poincag—Birkhoff-
Witt basis of the subalgebr&~ generated byf; and f,. The elements) e3¢5, for
p €N, p €{0,1} ando’ € {0, 1} build a Poincag—Birkhoff-Witt basis of the subalgebra
UT generated by; ande,. Together with the basis)'ky? (with s; € Z) for the Cartan
subalgebra, this provide a basis td(s/(2|1)).

Let wo0.0, wo01,---,Woon—1, DE & basis ol,. Then it follows from the definition
of Vo and of the Poinc&-Birkhoff-Witt basis off, (s/(2|1) given above that the vectors
2 fSwoo,, p,o €1{0,1}, p € {0, N — 1} build a basis ofM’. In particular

dimM’ = 4N 27)

i.e. four times the dimension dfy.

Since the dimensioV of Vy is bounded by, we already know that the dimension of
a simplel, (s/(2|1))-module is bounded byl4 Since nilpotent representations @ (g;)
have dimension less or equaliltpthe dimension of nilpotent representationgffts/(2|1))
is bounded by 4.
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5.1. Usual (typeAd) representations

We now start from @/, (gz)-module Vo which is theg-deformation of a classical module.
Let N be its dimension (KX N <').

The moduleM’ is then a highest weight module with highest weight veetgp o on
which

e1w =0 e W =0
1W0,0,0 2 W0,0,0 (28)
k1 wo,00 = A1w0,0,0 k2 wo,0,0 = A2w0,0,0
with A1 = a)qN’l, o= 1.
The Casimir operator§, have the following scalar value o’
Cp = (q — g D20 2l s + pz + 1] (29)
where, againg” = A;.
A basis of M’ is given by
b o op ) p,o €{0,1}
Wop,o,p = f2 f3 fl wo,0,0 with (30)

pel{0,...,N—1}.
By convention, we set
Wp.on = 0. (32)

A non-zero vector in a representation is called singular if it is annihilateel and e,
and is contained in a proper subrepresentation. Any submodul¢’ @ontains a singular
vector forM’. Indeed, any submodule @ has its owrif, (g5)-submodule annihilated by
ey. This last module is also dype A because this property is determined by the scalar
value of the central elements, which are determinedvfly The moduleM’ is simple if,
and only if, it contains no singular vectoy # 0.

Lemma 1.The non-vanishing of the Casimir operat@lsis a sufficient condition for’
to be simple.

The comparison of the values of the Casimir operators on the highest weight vector and on
the singular vector indeed shows that

[wa][N + po] =0 (32

is a necessary condition for the existence of a singular vector (which cannotWesince

Vo is a simpleld, (gz)-module). This condition amounts to the vanishing of all the Casimir
operatorsC,. We shall see that this is actually a necessary and sufficient condition for the
simplicity of M.

5.1.1. Typical typeA representations.

Proposition 3.1f equation (32) is not satisfied, the modul¢ is simple. It has dimension
4N. Its explicit expression is given in (B2). It is called typical.

Proof. If equation (32) is not satisfiedM’ contains no singular vector. FaQ¥ =
1,...,I' =1, the subspacé¢, Vo & f3Vp is the direct sum ot/ (gy)-modules characterized
by the dimension®/ £1 and signw. ForN =1, f2,Vo® f3Vp is an indecomposablé, (gg)-
module which is isomorphic to the tensor productigfwith the spin% representation, and
which contains the dim= 1" — 1 (sign= w) simple sul¥{, (gz)-module. d
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5.1.2. Atypical typed representations. We now consider the casg{l[N + u2] =0 (i.e.
(A3 — 1)(A3 — g2¥) = 0). We will prove the following proposition.

Proposition 4.If the Casimir operator§, vanish onM’, there exists a maximal submodule
M" of M’. The quotient spacef = M'/M" is a simple module, called atypical. We can
consider three cases:

e If[pu2] =0and NV + wy] # 0, then dimM = 2N — 1.
o If[ug] #0and [V + up] =0, then dimM = 2N + 1.
e If[u2] =0 and [V + 2] =0 (and henceV = I), then dimM = 2/’ — 1.

Proof. Atypical typed representations witliuo] = 0 and [N + uo] # 0. In this case, the
vector fowo o0 = wioo iS @ singular vector. The action &f,(s/(2|1)) on it generates a
(2N + 1)-dimensional submodul#é/” spanned by

fwio0=¢q"wi0, — g [plworp-1 p=0,...,N

- (33)
1 fawro0 = —¢ w11, p=0,...,N—1.

This submodule is maximal. Quotientidg’ by M” provides a2N —1)-dimensional simple
module M, the expression of which is given in (B3).

Atypical type A representations witfuz] # 0 and [N + up] = 0. Looking by direct
computation for a singular vector, we see tat= 1, [1+ up] = 0 is a particular case:
it is the only case of existence of a singular vectoriyfsVy (one-dimensional in this
case). The singular vector 8,10 = f2fawo0,0. It generates onlyf, f3Vo asid, (sl(2|1))-
submodule. The quotien¥’/f> f3Vy is three-dimensional. It is actually thgedeformed
three-dimensional atypical fundamental representation.

If N e{2 ...,I' =1}, there is a singular vector given by
vy = A1qwi01 + [a]wo 0. (34)
It generates th€2N — 1)-dimensional maximal submoduld” spanned by
v = rgtPwio pi1 + (01 — plwos, p=0..,N=-2 (35)
I favs = [malwia, p=0....N-1.

The quotient = M’/M" is a(2N +1)-dimensional simple module given explicitly in (B4).

Atypical typeA representations wittv = 1I’. If [u2] = 0 andN = I’, the vectorwi oo
is singular. The submodule it generates is similar to (33), except thatﬁj’twg_o,o =0.
However, the vectomg 1,1 iS subsingular, i.e. its image k»f ande; is contained is the
submodule generated hy; o0. It belongs to the maximal submodulé” of M’. Note that
Siw100 € M” is also singular. The submodul¢” has dimension2+1 andM = M'/M”
has dimension2— 1. It is also described by (B3). O

5.2. Nilpotent type3 representations

We now consider the case whelg is a type B nilpotent i, (g5)-module, of dimension
N = I', with two parameters.; and A,. We assumeyf; + 1] # 0 since this case was
treated agype.A. As in thetype A case we consider the induced modMg, on which
(28) applies. A basis foM’ is also given by (30) withv =/’. We also have

Proposition 5.Nilpotenttype B representations fall into two classes



U,(s1(2/1)) at roots of unity 875

o If [po][ps +p2+1]#0, i.e.C, # 0, thenM’ is simple. Its dimension is/4and the
parameters arg; andi,. Its explicit expression is given in (B2) (typical case).

o If [uo][pr + u2+1] =0, i.e.C, = 0, thenM’ has a maximal submodulgf” of
dimension 2. ThenM = M’/M” has dimension 22 (atypical case).

Proof. As in thetype.A case, there is no singular vector if t@g do not vanish. Now
suppose that,][ w1 + 12 + 1] = 0 We can separate this case into two subcases, according
to which term of the product vanishes (both terms cannot vanish simultaneously, since
[1 — p + 1] # O for any integerp in type B U, (gg)-modules).

e If [ug] = 0, the vectorwy g is singular. It generates the submodM€ given as in
(33) with N = I, except that nowfl’wl,o,o = 0. Then dimM” = 2I’. The quotient
module hence has dimensiofi.2lt is described by (B3).

o If [ug+ u2+ 1] = 0, then there is a singular vector given by (34). It generates the
submoduleM” given as in (35) withV = [I’, except that novxg‘ll"lvs # 0 also belongs
to M”, so that dimM” = 2/’. Again, dimM = 2" and M is described by (B4). O

5.3. Periodic and semi-periodic tyf# representations

Let us now consider the case wh&g is a periodic or semi-perioditZ, (g5)-module, i.e.
with non-vanishing (scalar) value of the central elemﬁl‘nt

fi=¢'id. (36)

In U, (sl(2|1)), f] is also central, so equation (36) also holds\nh

The value of the central eIemed} will be a free parameter (possibly zero for semi-
periodic representations). One would get the representations with a vanishing vaitfe for
and a non-vanishing value fef, using the automorphism @f, (s/(2|1)) given by

ve) = fi v(fi) =e
yky) = kit ¥(ko) = —ky*.

The moduleM’ is actually characterized by the following actions on a veetgp.o
of Vo:

(37)

Fflwooo = ¢'wooo Sre1wo,00 = Bwo,o,0

(38)
kiwo,0,0 = A1wo,0,0 = ¢"*wo 0,0 kowo 0,0 = A2wo,0,0 = g"2wo,0,0-

Those values determine the valuesebf(using equation (22)) and af,:

Cp=(q—q "2 2 (allpa + u2 + 11— B) - (39)
A basis of M’ is given by

0P P fg P with 1777 ¢ 4 (40)
Wpop =9 wo,0,
P 278 A1 TREp pef0,....1—1).
Proposition 6.For periodic and semi-periodic representations, the following alternative
holds:

o (). If[w2dlpr + 2+ 1] — B # 0, the moduleM’ is irreducible and its dimension is
equal to 4. It is described explicitly in equation (B5).

o (ii). If [u2llper + 2+ 1] — B = 0, the moduleM’ is not simple. It has a submodule
M" of dimension 2 and the factor spack’/M” is an irreducible module of dimension
21, explicitly given by equation (B6).
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The cases (ii) corresponds to atypical periodic representationg@iig|+u2+1] = 8
is the condition for the vanishing of the Casimir operat@yson M’.

Proof. By direct computation, we check that{l[ 1+ u2+1]— 8 = 0 is the necessary and
sufficient condition for the existence of a vector (not belongingi)p annihilated by botla,
andes. This vector then belongs tf Vo @ f3Vo and it generates a-2limensional subspace
spanned by the vectots; 1 , and &L2+p+1]wo,1,p—)\glq‘Pw1,o,p+l forpe{0,...,1-1}.
The quotient ofM’ by this submodule is simple.

6. Complete sets of representations dff,(sl(2]1))

Proposition 7.A set of typical periodic representations corresponding to an open subset of
the set of values of the parameters is a complete set of representations.

Proof. Let Q be a set of representations, aRde U, (s/(2|1)) such thatR vanishes on
all the representations @&®. As for U, (s/(2)), we can restrict ourselves to the case where
kiRkt = q%R for given gradings; (i = 1, 2).

We have in fact to consider five cases, according to the possible gradings with respect
to klkg. All the possible values fotl; + 2d, are actually—2, —1, 0, 1, 2 (this is due to
the fact that the squares of fermionic generators vanish, and it can also be read from the
Poincaé—Birkhoff—-Witt basis).

di+2dy, = -2 R = Riezer
di+2d, = -1 RED = Roez + Raes + Rafroeser + Rs faezer

di+2d, =0 RO = Rg + Ry fae2 + Refaez + Rofoez + Raofses + Rivrfz fesez
di+2d, =1 RY = Riofo + Riafs + Riafafaez + Risfofaes
di+2dy =2 RP = Riefofs

(41)

where theR,; are elements o/, (g5). We have to prove that all of them vanish. Since
Q is a set of representations corresponding to an open subset of the set of values of the
parameters, the representationdffgg) given by the corresponding is a complete set.
If we identify Vo and f> f3Vo (as i, (gg)-modules), we see that the vanishing7i and
R16 results from this. Let us now consid®?, the cases oRY andR® being simpler.
SinceR@ezer = Reezer act as zero on all the representationshftnenRg = 0. Now,
R@e, = (Ro fo+Riofa)eses. This operator sends fzVo into f>2Vo@® faVp and is supposed
to act as zero. Looking at the explicit action of this operator on the vegtpy and using
the fact thatf, Vo @ f3Vs is generically a direct sum of two inequivaléif(gg)-modules, we
learn thatRg = R1o = 0. Multiplying R©® on the right byes, we then prove in a similar
way thatR; = Rg = 0. Finally, the proof thaiR11 = 0 mimics the proof of proposition 2.
O

7. Proof of the relation in the centre

We now use a complete set of representation to prove the relation

l 1\ /I -
PiChr.. G = @+ D —14 Y ol (’“n )( m)

= m—1 n+1 n

n=0
m+n<l

=(1-2222) (25— 1) — (¢ — ¢ H¥ 22211 (42)
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On a typicaltype B periodic representation characterized by the parametgrs,, ¢’
and g, the value ofC, is

2p—2
Cp= ()" ¢
2p— -2 1 =14 — _ _
= AP ((qhare — ¢ AT 00 — 25D — (¢ — ¢ 7H2B)
2p—1,4p-2

=21"05" (qhad + g — (6 +67D)
_ )\?771)\4211772 <q1/2)é/2/\2€1/2 _ qfl/Z)Llfl/Z)LElel/Z)
% (ql/zki/z)\zé’l/z _ qfl/z){l/Z/\ElEl/z) (43)
where(q —g ™ 2(E +&7D = (g — g D 2(gM+q ') + B is the value of thé, (gg)

qguadratic Casimir operator on the subsp&ge
The polynomialP; in (18) is such that, if we set

Cr = MA3(x1 — x7 D (x2 — x5 1)

X2 _ Aar (44)
x1
then
P(Cr,....C) = A5 (x1 — x77) (xh — x37) (45)
so that
PCa,...,C) = MAZ (MpZ + a0 — @ +&7) . (46)

Using the polynomial relation (22) itv,(gp), we identify (§' + £~') with the value of
(g — g HZ fle} + (k' + k') and we get the evaluation of the right-hand side of (18) on
the representation. Since this is true for any typical periodic representations, and since the
set of those representations is complete, the relation is true in the enveloping algebra.

The existence of any other independent polynomial relation in the centre would imply
more relations between the parameters of the periodic representations, so we also conclude
that there is no other independent relation.

Appendix A. Finite-dimensional irreducible representations ofid,(gl(2))

Nilpotent modules af, (g/(2))

k1v, = A1g"?"v, for pe{0,...,N -1}

f1vp = vpq1 for pe{0,...,N—2} and fivy.1=0 (AD)
e, = [pllpa — p+ Lvp1 q" =

kov, = A2qPv, for pe{0,...,N —1}.

The dimensionV is the smallest non-negative integer satisfying[uy — N + 1] = 0.
For usualtype A representationsy € {1, ..., !’} and the highest weight is related A by
2= gL, with w = +1.

For nilpotenttype B representation® = I’ and; is a free parameter.

If N =1 andi; = +¢71, the representation is still thge-deformation of a classical
one, but it hag;-dimension V] = 0. This case plays a special role.
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Periodic and semi-periodic modules#f(g!(2))

kiv, = Alq_zl’vp

Jivp = 9vpna

-1 (A2)
e, = ¢ “([pllpr — p+ 1+ Bvp-a
kov, = Aog”v,
with p € {0,...,1 — 1}, andg® = ;, without definingyu; itself. These representations

have no classical analogutyffe 5).

Appendix B. Finite-dimensional irreducible representations oft4, (sl(2|1))

The following relations are used to determine the action of the generators on the
representations:
AR =" 1515 [ = p@ =)™ 57 5L
LB =0=p 575 H
ler. fL15 11 =0 = p) (=17 5T (52 g2+ ) £ 45 " — p+ 1] (BD)
e2 f3 13 1 — (D[ f5 f] ez
=p {75 Hlha+ p+ol +o (=" ff 5 g7
where(p, p, 0) € N x {0, 1} x {0, 1}.

Typical nilpotent modules

kiwp.ep = P Wo.o.p

kowpop =22’ P wp o p

Awpop=q"""Wpopt1—pA—0)g "Wy 1041,

f2 Wp.o,p = d-p) Wo+1,0,p

LWy op =—0(L—pAg P wpi10-1, + [Pl — p + Lwp o po1

e2Wpgp = pluz+p+0lwe 10, +0 (=D A Wy o1 pia

with (p, p, 0) € {0, ..., N —1} x {0, 1} x {0, 1} in the left-hand side and, by convention,

w, -y = 0 in the right-hand side. Fdype.4 modules,g™ = A1 = wg" 1. FortypeB
nilpotent modulesN =1’ andg’* = A4 is free.

(B2)

Atypical nilpotent modules: thig:,] = 0 case
kl Wo,p = )qu—o—Zp Wo,p
k2 Wo,p = 86]a+p Wo, p

o
S1We,p = q° Ws pi1

1 (B3)
fowep = A —0)g" [pl wet1,p-1
erwsp =q ’[pllua+1—p—olws 1
Wy p =08q "We_1 p11
wheres € {0, 1}. Fortype A representationsgy € {0,..., N — 1 — o} and the dimension

is 2N — 1. Fortype B representationy; € {0, ..., I’ — 1} and the dimension is 2
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Atypical nilpotent modules: thige1 + p2 + 1] = 0 case

—0—2,
k1 Wo,p = A1g r Wo, p

-1 _o+p-1
ko we p, = €A1 q° " w,

o
fl Wo,p = (4 Wo p+1

1,2 (B4)
f2 Wo,p = _(1 - U))"l qp [/’Ll 2 + 1] Wo+1,p—1
€1 Wo,p = 6]_0[17 + G][Ml +1- p]wa,p—l
€2 Ws,p = o'z':)‘lq_p-’—lwcrfl,erl
whereo € {0, 1}. Fortype.A representationg € {—o, ..., N — 1} and the dimension is

2N + 1. FortypeB representationg € {0, ...,/” — 1} and the dimension isi2

Typical periodic modules

The actions of the generatoes, ¢, f1 and f, on a typical periodicM module are given
by

kiwp.ep = )‘1‘]/)_0_217 Wpo.o,p

kowp.op = A2 P Wp,o,p

fiwpep =09 W o pt1— o1 —0)g  Wy_1641p

fowpop=0A=p)Wyt10p

2p+1

€1Wpop = _90_10—(1 - P))Llf]_ Wo+1,0-1,p + (P_l ([p][lu’l - P + 1] + :3) Wp,o,p—1

€Wy o.p = p[MZ +p+ U] Wo-1,6,p T U(_l)p)\g_lqipwp,a—l,p-&-l

(B5)
with (p,0) € {0, 1}?andp € {0, ..., — 1}.
Atypical periodic modules
k1 Wo,p = )‘-16]_0_2"7 lbn,p
k2 Wo,p = )»ZCIUJFP wa,p
S Wo,p = vq° Wo, p+1 (BG)

fowep = (1 —0)rg"  [pz + pl Wot1 p-1
eAWo, =9 ¢ [p+pallpr+pe— p+1—0olws 1

-1 -
e We,p =0r5 ¢ PWe_1 pt1

witho € {0, 1} andp € {0, ..., —1}.
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