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Abstract. Quantum groups at the roots of unity have the property that their centre is enlarged.
Polynomial equations relate the standard deformed Casimir operators and the new central
elements. These relations are important from a physical point of view, since they correspond
to relations between quantum expectation values of observables that have to be satisfied on
all physical states. In this paper, we establish these relations in the case of the quantum Lie
superalgebraUq (sl(2|1)). In the course of the argument, we find and use a set of representations
such that any relation satisfied on all the representations of the set is true inUq (sl(2|1)). This
set is a subset of the set of all the finite-dimensional irreducible representations ofUq (sl(2|1)),
which we classify and describe explicitly.

1. Introduction

Classical and quantum Lie superalgebras and their representations respectively play
an important role in the understanding and exploitation of classical andq-deformed
supersymmetry in physical systems. A complete classification of the finite-dimensional
simple classical Lie superalgebras overC has been given by Kac [11, 12] and Scheunert [23].
The corresponding irreducible representations fall into two series, called typical and atypical.

Irreducible representations of the quantum analogue of superalgebras are studied
intensively whenq is not root of unity in [20, 21, 18, 25].

A complete classification of finite-dimensional irreducible representations of unrestricted
quantum algebras forq being a root of unity exits only in the particular case ofUq(sl(2))
[22]. Partial classifications exist also in the case ofUq(sl(3)), in [6] for the restricted
case and in [2] for periodic representations. Considerable progress towards a complete
classification in the general case ofUq(G) for G being a simple Lie algebra was made in
[4, 5].

The classification of finite-dimensional irreducible representations ofUq(osp(1|2)) for
any q parallels theUq(sl(2)) case [9, 16, 19, 26]. The only other fully understood case is
Uq(sl(2|1)) [25, 27].

Our main goal in this paper is the structure of the centre ofUq(sl(2|1)) whenq is a root
of unity. Complete sets of representations, to be defined below, give a convenient way of
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proving relations in this centre. Their construction involves a detailed knowledge of matrix
elements of the finite dimension irreducible representations, whose classification is given
below, with emphasis on what is needed for the rest of the paper.

In section 2, we give the definition of the quantum superalgebraUq(sl(2|1)) and the
expression for the central elements. Generalities on the finite-dimensional irreducible
representations ofUq(sl(2|1)) are presented in section 3. In section 4, we recall some
useful results onUq(gl(2)) at roots of unity and we give complete sets of irreducible
representations for this quantum algebra: expressions in the universal quantum enveloping
algebra that vanish on such sets, vanish identically. In section 5, we classify the finite-
dimensional irreducible representations ofUq(sl(2|1)). In section 6, we present complete
sets of representations corresponding to infinite subsets of the set of continuous parameters.
All the representations of these complete sets have the same dimension, unlike the classical
case [1]. Finally, in section 7, we prove the relations in the centre using our complete set
of irreducible representations.

2. Quantum superalgebraUq(sl(2|1)) and its centre

The superalgebraUq(sl(2|1)) is the associative superalgebra overC with generators
k1 = qh1, k−1

1 = q−h1, k2 = qh2, k−1
2 = q−h2, e1, e2, f1, f2 and relations

k1k2 = k2k1 (1)

kiej k
−1
i = qaij ej kifj k

−1
i = q−aij fj (2)

e1f1 − f1e1 = k1 − k−1
1

q − q−1
e2f2 + f2e2 = k2 − k−1

2

q − q−1
(3)

[e1, f2] = 0 [e2, f1] = 0 (4)

e2
2 = f 2

2 = 0 (5)

e2
1e2 − (q + q−1)e1e2e1 + e2e

2
1 = 0 (6)

f 2
1 f2 − (q + q−1)f1f2f1 + f2f

2
1 = 0 . (7)

The last two equations are called the Serre relations. The matrix(aij ) is the distinguished
Cartan matrix ofsl(2|1), i.e.

(aij ) =
(

2 −1

−1 0

)
. (8)

The Z2-grading inUq(sl(2|1)) is uniquely defined by the requirement that the only odd
generators aree2 andf2, i.e.

deg(k1) = deg(k2) = 0

deg(k−1
1 ) = deg(k−1

2 ) = 0

deg(e1) = deg(f1) = 0

deg(e2) = deg(f2) = 1 .

(9)

We will not use the (standard) co-algebra structure in what follows.
Define

e3 = e1 e2 − q−1e2 e1 and f3 = f2 f1 − q f1 f2 . (10)
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The quantum Serre relations become

e1 e3 = q e3 e1

f3 f1 = q−1f1 f3 .
(11)

Furthermore

e2 e3 = −q e3 e2

f3 f2 = −q−1f2 f3
(12)

and

e3 f3 + f3 e3 = k1 k2 − k−1
1 k−1

2

q − q−1

e2
3 = f 2

3 = 0 .

(13)

In what follows, we will use the conventional notation

[x] ≡ qx − q−x

q − q−1
. (14)

When q is not a root of unity, the centre ofUq(sl(2|1)) is generated by the elements
Cp, p ∈ Z, where

Cp = k
2p−1
1 k

4p−2
2 (q − q−1)2

{
[h1 + h2 + 1][h2] − f1e1

+ f2e2([h1 + h2]q1−2p − [h1 + h2 + 1])

+ f3e3([h2 − 2]q1−2p − [h2 − 1])

+ (q − q−1)q−1−p[p]f3e2e1k2 + (q − q−1)q2−pf1f2e3k
−1
2 [p − 1]

+ (q − q−1)2q1−2p[p][p − 1]f2f3e3e2

}
. (15)

They satisfy the relations

Cp1Cp2 = Cp3Cp4 if p1 + p2 = p3 + p4 . (16)

The fact that the centre was not finitely generated in the classical case was discovered in
[13, 24]. The explicit expression for a set of generators of the centre, together with the
relations, was given in [1] in the classical case and in [3] in the quantum case.

In this paper, we consider the case whereq is a root of unity. Letl be the smallest
integer such thatql = 1. We define

l′ =
{
l if l is odd

l/2 if l is even
(17)

the elementszi ≡ kli , x1 ≡ el1 andy1 ≡ f l1 also belonging to the centre.

Proposition 1.When l is odd, the central elementsz1, z2, x1, y1 andCp, p ∈ Z satisfy the
relations

Cp+l = z2
1z

4
2Cp

C lp+1 = z2
1z

4
2C lp

Pl(C1, . . . , Cl)≡ (C1 + 1)l − 1 +
∑
m>2
n>0
m+n6l

CmCn1
l

m− 1

(
m+ n− 1

n+ 1

)(
l −m

n

)

= (
1 − z2

1z
2
2

)(
z2

2 − 1
) − (q − q−1)2lz2

1z
4
2y1x1 .

(18)
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The first two relations follow from the expression forCp and from (16). The third relation
will be proved using complete sets of representations ofUq(sl(2|1)). Furthermore, there is
no other independent polynomial relation.

3. Generalities on finite-dimensional irreducible representations

Let us consider a finite-dimensional irreducible left moduleM over Uq(sl(2|1)).
• The generatorsk1 andk2 are simultaneously diagonalizable on the moduleM.
• Sincee2

2 = 0 and dimM < ∞, there exists a subspaceV ⊂ M annihilated bye2, i.e.

∀ v ∈ V e2 v = 0 . (19)

• Sincee2
3 = 0 ande2 e3 = −q e3 e2, there existsV0 ⊂ V annihilated bye3, i.e.

∀ v ∈ V0 e2 v = e3 v = 0 . (20)

• Because of (2) the subspaceV0 is stable by left multiplication byk1 andk2.
• Because of (10) and (11) the subspaceV0 is stable by left multiplication bye1.
• Because ofe2 f1 = f1 e2 ande3 f1 − f1 e3 = −e2 k

−1
1 the subspaceV0 is stable by left

multiplication byf1.

Let g0 ' gl(2) be the even subalgebra ofsl(2|1). The algebraUq(g0) is generated by
e1, f1, k1 andk2.

The moduleV0 is then aUq(g0) submodule ofM. It is simple (as aUq(g0) module),
since any submodule ofV0 would generate a proper submodule ofM by left action of
Uq(sl(2|1)). As a consequence of the simplicity ofV0, the elementk1 k

2
2 (theU(1) generator)

is represented by a scalar onV0.
Let Uq(g+) be the subalgebra ofUq(sl(2|1)) generated bye1, f1, ki ande2. The subspace

V0 is also aUq(g+)-module, annihilated bye2.
From V0 considered as anUq(g+)-module, one can construct an inducedUq(sl(2|1))-

moduleM ′ = Uq(sl(2|1)) ⊗Uq (g+) V0. ThenM is equal toM ′ if M ′ is simple, or to the
quotient ofM ′ by its maximal submodule otherwise.

Since we already know that each finite-dimensional irreducible representation of
Uq(sl(2|1)) is associated with one finite-dimensional irreducible representationV0 of Uq(g0),
we will construct the classification of the former in terms of the latter. As we will see, the
correspondence is one-to-one. We now need some results onUq(gl(2)) at roots of unity.

4. Uq(gl(2)) at roots of unity

4.1. The centre ofUq(gl(2))

The elementsk1k
2
2, kl

′
1 , kl2, el1, f l1 e

l′
1f

l′
1 , f l

′
1 e

l′
1 are central inUq(gl(2)). The q-deformed

quadratic Casimir operator is

CUq (gl(2)) = qk1 + q−1k−1
1 + (q − q−1)2f1e1 . (21)

When l is odd, the centre ofUq(gl(2)) is actually the algebra defined by the generators
k1k

2
2, kl1, el1, f l1, CUq (gl(2)) and the relation [15]

2Pl
(CUq (gl(2))/2

) = kl1 + k−l
1 + (q − q−1)2lf l1e

l
1 . (22)

The polynomialPl is the first kind Chebyshev polynomial of degreel defined by

Pl(cosx) = cos(lx) . (23)
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4.2. Finite-dimensional irreducible representations ofUq(gl(2))

All the finite-dimensional simple modules overUq(gl(2)) are of course cyclic. We denote
those representations that are deformations of the classical representationstypeA, and the
otherstypeB. Knowing theUq(sl(2)) case, we only need to add a parameter related to
the value of theU(1) generatork1k

2
2. This parameter may be provided asλ1λ

2
2 (value of

k1k
2
2) and a sign, or simply by the valueλ2 of k2 on a given vector. The finite-dimensional

irreducible representations ofUq(sl(2)) are [22]:

• typeA: usual (nilpotent) representations, wherek2l
1 = 1, el

′
1 = 0, f l

′
1 = 0, characterized

by their dimensionN = 1, . . . , l′ and a signω. The highest weightλ1 is λ1 = qN−1.
These representations are given explicitly in equation (A1). The representation of
dimension l′ plays a special role. It is in fact in the intersection of this case and
the following.

• typeB: coloured (nilpotent) representations, with stillel
′

1 = 0, f l
′

1 = 0, characterized by
their highest weightλ1, a continuous parameter. Their dimension isl′. They are also
described by (A1).

• type B: periodic and semi-periodic representations, explicitly given in (A2). These
representations have dimensionl. They depend on four complex parameters
corresponding to the values of the three central elementskl

′
1 , el1, f l1 and one discrete

parameter corresponding to the value of the quadratic CasimirCUq (gl(2)) of Uq(gl(2))
and related to the former through the relation (22). TheUq(gl(2))-representation is also
completely characterized by the parametersy = ϕl , β, λ1 andλ2 appearing in

f l1v0 = ϕlv0 f1e1v0 = βv0

k1v0 = λ1v0 = qµ1v0 k2v0 = λ2v0 = qµ2v0.
(24)

The existence of periodic irreducible representations has the following consequence:
the primitive ideals defined as the kernels of these representations are not the annihilator of
the irreducible quotient of some Verma module, unlike the case of classical (super)algebras
[8, 17].

4.3. Complete sets of representations ofUq(sl(2))

We prove that a set of generic (periodic) representations corresponding to an open subset of
the set of parameters builds a complete set, in the following sense: if an element ofUq(sl(2))
acts as 0 on all the representations of this set, then it is the 0 element ofUq(sl(2)). This
terminology was used in [1], where the authors found complete sets of finite-dimensional
irreducible representations of the classicalsl(2) and sl(2|1). For quantum groups at roots
of unity, we shall obtain rather different results.

Let R ∈ Uq(sl(2)) be such that it vanishes on a set� of representations. Letq2(t−r)

be theq-grading of an elementf r1 k
s
1e
t
1. We havek1

(
f r1 k

s
1e
t
1

) = q2(t−r) (f r1 ks1et1) k1. Any
element ofUq(sl(2)) is a sum of terms of given grading since thef r1 k

s
1e
t
1 form a basis

of Uq(sl(2)). We write R = ∑l′−1
d=0 Rd , where the grading ofRd is q2d . CommutingR

with k1 shows that all theRd vanish separately on the representations in�. The same
is true for eachf d1 Rd . SinceUq(sl(2)) contains no zero divisor [14], the vanishing of
f d1 Rd in Uq(sl(2)) is equivalent to that ofRd . Hence, to prove that� is a complete set of
representations, we only have to show that the only element ofUq(sl(2)) commuting with
k1 and acting as 0 on all representations of� is 0.

Let R be an element ofUq(sl(2)) with grading 1, andn, n′ ∈ N such thatf n1 k
n′
1 R =∑

i aif
ri
1 k

si
1 e

ti
1 has only terms withri − ti ∈ l′N and si ∈ N. Thenf n1 k

n′
1 R can be written
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as a polynomial inf l
′

1 , k1, andf1e1, which commute with each other. The value of this
polynomial on the vectorv0 of the representation (A2) is the same polynomial evaluated on
the scalarsϕl

′
, λ1 andβ. If � is a set of representations corresponding to an open subset

of C3 for the values ofϕl
′
, λ1 andβ, and if R vanishes on all the representations of�,

then the polynomial vanishes identically inUq(sl(2)), and henceR = 0 as an element of
Uq(sl(2)). We then have the following proposition.

Proposition 2.A set of generic (periodic) representations corresponding to an open subset
of the set of values for the parameters is a complete set of representations.

Remark 1.An element ofUq(sl(2)) that vanishes on alltype A modules, or even on all
nilpotent or semiperiodic modules, is not necessarily 0 inUq(sl(2)) (take simplyR = el1f

l
1).

So a complete set of representations should include periodic ones.

Remark 2.Suitably choosen infinite sets of periodic representations (not necessarily
corresponding to an open set of values of the parameters) can also be complete.

5. Classification of finite-dimensional irreducible representations ofU(sl(2|1))

Let V0 an N -dimensional irreducibleUq(g0)-module, that we extend to aUq(g+)-module
by the requirement thate2V0 = 0.

Let M ′ be the induced moduleUq(sl(2|1))⊗Uq (g+) V0. Then

M ′ = V0 ⊕ f2V0 ⊕ f3V0 ⊕ f2f3V0 . (25)

The subspaces(f2V0 ⊕f3V0) andf2f3V0 are representations ofUq(g0) with the same value
for central elementskl

′
1 , kl2, el1, f l1 as forV0. If we write the value of quadratic Casimir

CUq (gl(2)) of Uq(gl(2)) asξ + ξ−1, then its eigenvalues on the different subspaces are

Subspace CUq (gl(2))

V0 : ξ + ξ−1

(f2V0 ⊕ f3V0) : qξ + q−1ξ−1, q−1ξ + qξ−1

f2f3V0 : ξ + ξ−1 .

(26)

The elementsf ρ2 f
σ
3 f

p

1 , for p ∈ N, ρ ∈ {0, 1} andσ ∈ {0, 1} build a Poincaŕe–Birkhoff–
Witt basis of the subalgebraU− generated byf1 and f2. The elementsep

′
1 e

σ ′
3 e

ρ ′
2 , for

p′ ∈ N, ρ ′ ∈ {0, 1} andσ ′ ∈ {0, 1} build a Poincaŕe–Birkhoff–Witt basis of the subalgebra
U+ generated bye1 and e2. Together with the basisks11 k

s2
2 (with si ∈ Z) for the Cartan

subalgebra, this provide a basis forUq(sl(2|1)).
Let w0,0,0, w0,0,1, . . . , w0,0,N−1, be a basis ofV0. Then it follows from the definition

of V0 and of the Poincaré–Birkhoff–Witt basis ofUq(sl(2|1) given above that the vectors
f
ρ

2 f
σ
3 w0,0,p ρ, σ ∈ {0, 1}, p ∈ {0, N − 1} build a basis ofM ′. In particular

dimM ′ = 4N (27)

i.e. four times the dimension ofV0.
Since the dimensionN of V0 is bounded byl, we already know that the dimension of

a simpleUq(sl(2|1))-module is bounded by 4l. Since nilpotent representations ofUq(g0)

have dimension less or equal tol′, the dimension of nilpotent representations ofUq(sl(2|1))
is bounded by 4l′.
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5.1. Usual (typeA) representations

We now start from aUq(g0)-moduleV0 which is theq-deformation of a classical module.
Let N be its dimension (16 N 6 l′).

The moduleM ′ is then a highest weight module with highest weight vectorw0,0,0 on
which

e1w0,0,0 = 0 e2w0,0,0 = 0

k1w0,0,0 = λ1w0,0,0 k2w0,0,0 = λ2w0,0,0
(28)

with λ1 = ωqN−1, ω = ±1.
The Casimir operatorsCp have the following scalar value onM ′:

Cp = (q − q−1)2λ
2p−1
1 λ

4p−2
2 [µ2][µ1 + µ2 + 1] (29)

where, again,qµi ≡ λi .
A basis ofM ′ is given by

wρ,σ,p = f
ρ

2 f
σ
3 f

p

1 w0,0,0 with

{
ρ, σ ∈ {0, 1}
p ∈ {0, . . . , N − 1} .

(30)

By convention, we set

wρ,σ,N ≡ 0 . (31)

A non-zero vector in a representation is called singular if it is annihilated bye1 ande2

and is contained in a proper subrepresentation. Any submodule ofM ′ contains a singular
vector forM ′. Indeed, any submodule ofM ′ has its ownUq(g0)-submodule annihilated by
e2. This last module is also oftypeA because this property is determined by the scalar
value of the central elements, which are determined byV0. The moduleM ′ is simple if,
and only if, it contains no singular vectorvs 6= 0.

Lemma 1.The non-vanishing of the Casimir operatorsCp is a sufficient condition forM ′

to be simple.

The comparison of the values of the Casimir operators on the highest weight vector and on
the singular vector indeed shows that

[µ2][N + µ2] = 0 (32)

is a necessary condition for the existence of a singular vector (which cannot be inV0 since
V0 is a simpleUq(g0)-module). This condition amounts to the vanishing of all the Casimir
operatorsCp. We shall see that this is actually a necessary and sufficient condition for the
simplicity of M ′.

5.1.1. Typical typeA representations.

Proposition 3.If equation (32) is not satisfied, the moduleM ′ is simple. It has dimension
4N . Its explicit expression is given in (B2). It is called typical.

Proof. If equation (32) is not satisfied,M ′ contains no singular vector. ForN =
1, . . . , l′ − 1, the subspacef2V0 ⊕ f3V0 is the direct sum ofUq(g0)-modules characterized
by the dimensionsN±1 and signω. ForN = l′, f2V0⊕f3V0 is an indecomposableUq(g0)-
module which is isomorphic to the tensor product ofV0 with the spin-12 representation, and
which contains the dim= l′ − 1 (sign= ω) simple sub-Uq(g0)-module. �



874 B Abdesselam et al

5.1.2. Atypical typeA representations. We now consider the case [µ2][N + µ2] = 0 (i.e.
(λ2

2 − 1)(λ2
2 − q−2N) = 0). We will prove the following proposition.

Proposition 4.If the Casimir operatorsCp vanish onM ′, there exists a maximal submodule
M ′′ of M ′. The quotient spaceM = M ′/M ′′ is a simple module, called atypical. We can
consider three cases:

• If [µ2] = 0 and [N + µ2] 6= 0, then dimM = 2N − 1.
• If [µ2] 6= 0 and [N + µ2] = 0, then dimM = 2N + 1.
• If [µ2] = 0 and [N + µ2] = 0 (and henceN = l′), then dimM = 2l′ − 1.

Proof. Atypical typeA representations with[µ2] = 0 and [N + µ2] 6= 0. In this case, the
vector f2w0,0,0 = w1,0,0 is a singular vector. The action ofUq(sl(2|1)) on it generates a
(2N + 1)-dimensional submoduleM ′′ spanned by

f
p

1 w1,0,0 = q−pw1,0,p − q−1[p]w0,1,p−1 p = 0, . . . , N

f
p

1 f3w1,0,0 = −q−1w1,1,p p = 0, . . . , N − 1 .
(33)

This submodule is maximal. QuotientingM ′ byM ′′ provides a(2N−1)-dimensional simple
moduleM, the expression of which is given in (B3).

Atypical typeA representations with[µ2] 6= 0 and [N + µ2] = 0. Looking by direct
computation for a singular vector, we see thatN = 1, [1 + µ2] = 0 is a particular case:
it is the only case of existence of a singular vector inf2f3V0 (one-dimensional in this
case). The singular vector isw1,1,0 = f2f3w0,0,0. It generates onlyf2f3V0 asUq(sl(2|1))-
submodule. The quotientM ′/f2f3V0 is three-dimensional. It is actually theq-deformed
three-dimensional atypical fundamental representation.

If N ∈ {2, . . . , l′ − 1}, there is a singular vector given by

vs = λ1qw1,0,1 + [µ1]w0,1,0 . (34)

It generates the(2N − 1)-dimensional maximal submoduleM ′′ spanned by

f
p

1 vs = λ1q
1−pw1,0,p+1 + [µ1 − p]w0,1,p p = 0, . . . , N − 2

f
p

1 f2vs = [µ1]w1,1,p p = 0, . . . , N − 1 .
(35)

The quotientM = M ′/M ′′ is a(2N+1)-dimensional simple module given explicitly in (B4).

Atypical typeA representations withN = l′. If [µ2] = 0 andN = l′, the vectorw1,0,0

is singular. The submodule it generates is similar to (33), except that nowf l
′

1 w1,0,0 = 0.
However, the vectorw0,1,l′−1 is subsingular, i.e. its image bye1 ande2 is contained is the
submodule generated byw1,0,0. It belongs to the maximal submoduleM ′′ of M ′. Note that
f1w1,0,0 ∈ M ′′ is also singular. The submoduleM ′′ has dimension 2l′ +1 andM = M ′/M ′′

has dimension 2l′ − 1. It is also described by (B3). �

5.2. Nilpotent typeB representations

We now consider the case whereV0 is a type B nilpotent Uq(g0)-module, of dimension
N = l′, with two parametersλ1 and λ2. We assume [µ1 + 1] 6= 0 since this case was
treated astypeA. As in the typeA case we consider the induced moduleM ′, on which
(28) applies. A basis forM ′ is also given by (30) withN = l′. We also have

Proposition 5.Nilpotent typeB representations fall into two classes
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• If [µ2][µ1 + µ2 + 1] 6= 0, i.e. Cp 6= 0, thenM ′ is simple. Its dimension is 4l′ and the
parameters areλ1 andλ2. Its explicit expression is given in (B2) (typical case).

• If [µ2][µ1 + µ2 + 1] = 0, i.e. Cp = 0, thenM ′ has a maximal submoduleM ′′ of
dimension 2l′. ThenM = M ′/M ′′ has dimension 2l′ (atypical case).

Proof. As in the typeA case, there is no singular vector if theCp do not vanish. Now
suppose that [µ2][µ1 +µ2 + 1] = 0 We can separate this case into two subcases, according
to which term of the product vanishes (both terms cannot vanish simultaneously, since
[µ1 − p + 1] 6= 0 for any integerp in typeB Uq(g0)-modules).

• If [µ2] = 0, the vectorw1,0,0 is singular. It generates the submoduleM ′′ given as in
(33) with N = l′, except that nowf l

′
1 w1,0,0 = 0. Then dimM ′′ = 2l′. The quotient

module hence has dimension 2l′. It is described by (B3).
• If [µ1 + µ2 + 1] = 0, then there is a singular vector given by (34). It generates the

submoduleM ′′ given as in (35) withN = l′, except that nowf l
′−1

1 vs 6= 0 also belongs
to M ′′, so that dimM ′′ = 2l′. Again, dimM = 2l′ andM is described by (B4). �

5.3. Periodic and semi-periodic typeB representations

Let us now consider the case whenV0 is a periodic or semi-periodicUq(g0)-module, i.e.
with non-vanishing (scalar) value of the central elementf l1

f l1 = ϕl id . (36)

In Uq(sl(2|1)), f l1 is also central, so equation (36) also holds inM ′.
The value of the central elementel1 will be a free parameter (possibly zero for semi-

periodic representations). One would get the representations with a vanishing value forf l1
and a non-vanishing value forel1, using the automorphism ofUq(sl(2|1)) given by

ψ(ei) = fi ψ(fi) = ei

ψ(k1) = k−1
1 ψ(k2) = −k−1

2 .
(37)

The moduleM ′ is actually characterized by the following actions on a vectorw0,0,0

of V0:

f l1w0,0,0 = ϕlw0,0,0 f1e1w0,0,0 = βw0,0,0

k1w0,0,0 = λ1w0,0,0 = qµ1w0,0,0 k2w0,0,0 = λ2w0,0,0 = qµ2w0,0,0 .
(38)

Those values determine the values ofel1 (using equation (22)) and ofCp:

Cp = (q − q−1)2λ
2p−1
1 λ

4p−2
2 ([µ2][µ1 + µ2 + 1] − β) . (39)

A basis ofM ′ is given by

wρ,σ,p ≡ ϕ−σ−pf ρ2 f
σ
3 f

p

1 w0,0,p with

{
ρ, σ ∈ {0, 1}
p ∈ {0, . . . , l − 1} .

(40)

Proposition 6.For periodic and semi-periodic representations, the following alternative
holds:

• (i). If [µ2][µ1 + µ2 + 1] − β 6= 0, the moduleM ′ is irreducible and its dimension is
equal to 4l. It is described explicitly in equation (B5).

• (ii). If [µ2][µ1 + µ2 + 1] − β = 0, the moduleM ′ is not simple. It has a submodule
M ′′ of dimension 2l and the factor spaceM ′/M ′′ is an irreducible module of dimension
2 l, explicitly given by equation (B6).
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The cases (ii) corresponds to atypical periodic representations and [µ2][µ1+µ2+1] = β

is the condition for the vanishing of the Casimir operatorsCp onM ′.

Proof. By direct computation, we check that [µ2][µ1+µ2+1]−β = 0 is the necessary and
sufficient condition for the existence of a vector (not belonging toV0), annihilated by bothe2

ande3. This vector then belongs tof2V0 ⊕f3V0 and it generates a 2l-dimensional subspace
spanned by the vectorsw1,1,p and [µ2+p+1]w0,1,p−λ−1

2 q−pw1,0,p+1 for p ∈ {0, . . . , l−1}.
The quotient ofM ′ by this submodule is simple.

6. Complete sets of representations ofUq(sl(2|1))

Proposition 7.A set of typical periodic representations corresponding to an open subset of
the set of values of the parameters is a complete set of representations.

Proof. Let � be a set of representations, andR ∈ Uq(sl(2|1)) such thatR vanishes on
all the representations of�. As for Uq(sl(2)), we can restrict ourselves to the case where
kiRk−1

i = qdiR for given gradingsdi (i = 1, 2).
We have in fact to consider five cases, according to the possible gradings with respect

to k1k
2
2. All the possible values ford1 + 2d2 are actually−2,−1, 0, 1, 2 (this is due to

the fact that the squares of fermionic generators vanish, and it can also be read from the
Poincaŕe–Birkhoff–Witt basis).

d1 + 2d2 = −2 R(−2) = R1e3e2

d1 + 2d2 = −1 R(−1) = R2e2 + R3e3 + R4f2e3e2 + R5f3e3e2

d1 + 2d2 = 0 R(0) = R6 + R7f2e2 + R8f3e2 + R9f2e3 + R10f3e3 + R11f2f3e3e2

d1 + 2d2 = 1 R(1) = R12f2 + R13f3 + R14f2f3e2 + R15f2f3e3

d1 + 2d2 = 2 R(2) = R16f2f3

(41)

where theRi are elements ofUq(g0). We have to prove that all of them vanish. Since
� is a set of representations corresponding to an open subset of the set of values of the
parameters, the representations ofUq(g0) given by the correspondingV0 is a complete set.
If we identify V0 and f2f3V0 (as Uq(g0)-modules), we see that the vanishing ofR1 and
R16 results from this. Let us now considerR(0), the cases ofR(−1) andR(1) being simpler.
SinceR(0)e3e2 = R6e3e2 act as zero on all the representations of�, thenR6 = 0. Now,
R(0)e2 = (R9f2+R10f3)e3e2. This operator sendsf2f3V0 into f2V0⊕f3V0 and is supposed
to act as zero. Looking at the explicit action of this operator on the vectorv1,1,p and using
the fact thatf2V0⊕f3V0 is generically a direct sum of two inequivalentUq(g0)-modules, we
learn thatR9 = R10 = 0. Multiplying R(0) on the right bye3, we then prove in a similar
way thatR7 = R8 = 0. Finally, the proof thatR11 = 0 mimics the proof of proposition 2.

�

7. Proof of the relation in the centre

We now use a complete set of representation to prove the relation

Pl(C1, . . . , Cl) ≡ (C1 + 1)l − 1 +
∑
m>2
n>0
m+n6l

CmCn1
l

m− 1

(
m+ n− 1

n+ 1

)(
l −m

n

)

= (
1 − z2

1z
2
2

)(
z2

2 − 1
) − (q − q−1)2lz2

1z
4
2y1x1 . (42)
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On a typicaltypeB periodic representation characterized by the parametersλ1, λ2, ϕl

andβ, the value ofCp is

Cp = (
λ1λ

2
2

)2p−2 C1

= λ
2p−1
1 λ

4p−2
2

(
(qλ1λ2 − q−1λ−1

1 λ−1
2 )(λ2 − λ−1

2 )− (q − q−1)2β
)

= λ
2p−1
1 λ

4p−2
2

(
qλ1λ

2
2 + q−1λ−1

1 λ−2
2 − (ξ + ξ−1)

)
= λ

2p−1
1 λ

4p−2
2

(
q1/2λ

1/2
1 λ2ξ

1/2 − q−1/2λ
−1/2
1 λ−1

2 ξ−1/2
)

×
(
q1/2λ

1/2
1 λ2ξ

−1/2 − q−1/2λ
−1/2
1 λ−1

2 ξ1/2
)

(43)

where(q − q−1)−2(ξ + ξ−1) ≡ (q − q−1)−2(qλ1 + q−1λ−1
1 )+ β is the value of theUq(g0)

quadratic Casimir operator on the subspaceV0.
The polynomialPl in (18) is such that, if we set

C1 = λ1λ
2
2(x1 − x−1

1 )(x2 − x−1
2 )

x2

x1
= λ1λ

2
2

(44)

then

P(C1, . . . , Cl) = λl1λ
2l
2

(
xl1 − x−l

1

) (
xl2 − x−l

2

)
(45)

so that

P(C1, . . . , Cl) = λl1λ
2l
2

(
λl1λ

2l
2 + λ−l

1 λ
−2l
2 − (ξ l + ξ−l)

)
. (46)

Using the polynomial relation (22) inUq(g0), we identify (ξ l + ξ−l) with the value of
(q − q−1)2lf l1e

l
1 + (

kl + k−l) and we get the evaluation of the right-hand side of (18) on
the representation. Since this is true for any typical periodic representations, and since the
set of those representations is complete, the relation is true in the enveloping algebra.

The existence of any other independent polynomial relation in the centre would imply
more relations between the parameters of the periodic representations, so we also conclude
that there is no other independent relation.

Appendix A. Finite-dimensional irreducible representations ofUq(gl(2))

Nilpotent modules ofUq(gl(2))

k1vp = λ1q
−2pvp for p ∈ {0, . . . , N − 1}

f1vp = vp+1 for p ∈ {0, . . . , N − 2} and f1vN−1 = 0

e1vp = [p][µ1 − p + 1]vp−1 qµ1 ≡ λ1

k2vp = λ2q
pvp for p ∈ {0, . . . , N − 1}.

(A1)

The dimensionN is the smallest non-negative integer satisfying [N ][µ1 −N + 1] = 0.
For usualtypeA representations,N ∈ {1, . . . , l′} and the highest weight is related toN by
λ1 = ωqN−1, with ω = ±1.

For nilpotenttypeB representationsN = l′ andλ1 is a free parameter.
If N = l′ and λ1 = ±q−1, the representation is still theq-deformation of a classical

one, but it hasq-dimension [N ] = 0. This case plays a special role.
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Periodic and semi-periodic modules ofUq(gl(2))

k1vp = λ1q
−2pvp

f1vp = ϕvp+1

e1vp = ϕ−1([p][µ1 − p + 1] + β)vp−1

k2vp = λ2q
pvp

(A2)

with p ∈ {0, . . . , l − 1}, and qµi ≡ λi , without definingµi itself. These representations
have no classical analogue (typeB).

Appendix B. Finite-dimensional irreducible representations ofUq(sl(2|1))

The following relations are used to determine the action of the generators on the
representations:

f1 f
ρ

2 f
σ
3 f

p

1 = qσ−ρf ρ2 f
σ
3 f

p+1
1 − ρ(1 − σ)q−ρf ρ−1

2 f σ+1
3 f

p

1

f2 f
ρ

2 f
σ
3 f

p

1 = (1 − ρ) f
ρ+1
2 f σ3 f

p

1

[e1, f
ρ

2 f
σ
3 f

p

1 ] = σ(1 − ρ)(−1)σ f ρ+1
2 f σ−1

3 f
p

1 q
h1−2p+1 + [p]f ρ2 f

σ
3 f

p−1
1 [h1 − p + 1]

e2 f
ρ

2 f
σ
3 f

p

1 − (−1)ρ+σ f ρ2 f
σ
3 f

p

1 e2

= ρ f
ρ−1
2 f σ3 f

p

1 [h2 + p + σ ] + σ(−1)ρf ρ2 f
σ−1
3 f

p+1
1 q−h2−p

(B1)

where(p, ρ, σ ) ∈ N × {0, 1} × {0, 1}.

Typical nilpotent modules

k1wρ,σ,p = λ1q
ρ−σ−2p wρ,σ,p

k2wρ,σ,p = λ2q
σ+p wρ,σ,p

f1wρ,σ,p = qσ−ρwρ,σ,p+1 − ρ(1 − σ)q−ρwρ−1,σ+1,p

f2wρ,σ,p = (1 − ρ)wρ+1,σ,p

e1wρ,σ,p = −σ(1 − ρ)λ1q
−2p+1wρ+1,σ−1,p + [p][µ1 − p + 1]wρ,σ,p−1

e2wρ,σ,p = ρ[µ2 + p + σ ] wρ−1,σ,p + σ(−1)ρλ−1
2 q−pwρ,σ−1,p+1

(B2)

with (p, ρ, σ ) ∈ {0, . . . , N − 1}× {0, 1}× {0, 1} in the left-hand side and, by convention,
wρ,σ,N = 0 in the right-hand side. FortypeA modules,qµ1 ≡ λ1 = ωqN−1. For typeB
nilpotent modules,N = l′ andqµ1 ≡ λ1 is free.

Atypical nilpotent modules: the[µ2] = 0 case

k1wσ,p = λ1q
−σ−2p wσ,p

k2wσ,p = εqσ+p wσ,p
f1wσ,p = qσwσ,p+1

f2wσ,p = (1 − σ)qp−1[p] wσ+1,p−1

e1wσ,p = q−σ [p][µ1 + 1 − p − σ ]wσ,p−1

e2wσ,p = σεq−pwσ−1,p+1

(B3)

whereσ ∈ {0, 1}. For typeA representations,p ∈ {0, . . . , N − 1 − σ } and the dimension
is 2N − 1. For typeB representations,p ∈ {0, . . . , l′ − 1} and the dimension is 2l′.
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Atypical nilpotent modules: the[µ1 + µ2 + 1] = 0 case

k1wσ,p = λ1q
−σ−2p wσ,p

k2wσ,p = ελ−1
1 qσ+p−1wσ,p

f1wσ,p = qσwσ,p+1

f2wσ,p = −(1 − σ)λ−1
1 qp−2[µ1 − p + 1]wσ+1,p−1

e1wσ,p = q−σ [p + σ ][µ1 + 1 − p]wσ,p−1

e2wσ,p = σελ1q
−p+1wσ−1,p+1

(B4)

whereσ ∈ {0, 1}. For typeA representations,p ∈ {−σ, . . . , N − 1} and the dimension is
2N + 1. For typeB representations,p ∈ {0, . . . , l′ − 1} and the dimension is 2l′.

Typical periodic modules

The actions of the generatorse1, e2, f1 andf2 on a typical periodicM module are given
by

k1wρ,σ,p = λ1q
ρ−σ−2p wρ,σ,p

k2wρ,σ,p = λ2q
σ+p wρ,σ,p

f1wρ,σ,p = ϕqσ−ρwρ,σ,p+1 − ϕρ(1 − σ)q−ρwρ−1,σ+1,p

f2wρ,σ,p = (1 − ρ)wρ+1,σ,p

e1wρ,σ,p = −ϕ−1σ(1 − ρ)λ1q
−2p+1wρ+1,σ−1,p + ϕ−1 ([p][µ1 − p + 1] + β)wρ,σ,p−1

e2wρ,σ,p = ρ[µ2 + p + σ ] wρ−1,σ,p + σ(−1)ρλ−1
2 q−pwρ,σ−1,p+1

(B5)

with (ρ, σ ) ∈ {0, 1}2 andp ∈ {0, . . . , l − 1}.

Atypical periodic modules

k1wσ,p = λ1q
−σ−2p w̃σ,p

k2wσ,p = λ2q
σ+p w̃σ,p

f1wσ,p = ϕqσwσ,p+1

f2wσ,p = (1 − σ)λ2q
p−1 [µ2 + p] w̃σ+1,p−1

e1wσ,p = ϕ−1q−σ [p + µ2][µ1 + µ2 − p + 1 − σ ]wσ,p−1

e2wσ,p = σλ−1
2 q−pwσ−1,p+1

(B6)

with σ ∈ {0, 1} andp ∈ {0, . . . , l − 1}.
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